Hippocampal slice models can be a powerful tool to study the mechanism of partial epilepsy. Despite the loss of connection with the rest of the brain, in vitro hippocampal slice preparations allow detailed physiological and pharmacological studies, which would be impossible, in vivo. There are several methods to induce electrographic seizures on hippocampal slice models. Those are electrical pulse train stimulation, 0 Mg2+ artificial cerebrational fluid and high concentration of extracelluar K+ on bath. Among them, the electrically triggered seizure may mimic the physiological communication between neuronal populations without any deterioration of normal physiologic and chemical status of the hippocampal slice models. Presumably, such communication from hyperexcitable areas to other neuronal populations is involved in the development of epilepsy. Eelectrographic seizures in hyppcampal slice models occur in the network of neurons that are involved in epileptic seizures in the hippocampus in vivo. Because these models have many advantages and are very valuable to research of epileptogenesis on partial epilepsy, I would like to introduce the electrophysiological methods to induce electrographic seizure or epilepsy on hippocampal slice models briefly in this paper.